Saltar al contenido

Próximo gran paso para escalar la computación cuántica – ScienceDaily

4 de febrero de 2021

Científicos e ingenieros de la Universidad de Sydney y Microsoft Corporation han abierto el siguiente capítulo en tecnología cuántica con la invención de un solo chip que puede generar señales de control para miles de qubits, los componentes básicos de las computadoras cuánticas.

«Para darse cuenta del potencial de la computación cuántica, las máquinas necesitarán operar miles, si no millones, de qubits», dijo el profesor David Reilly, diseñador del chip que ocupa un cargo conjunto con Microsoft y la Universidad de Sydney.

«Las computadoras cuánticas más grandes del mundo operan actualmente con sólo 50 qubits», dijo. «Esta pequeña escala se debe en parte a los límites de la arquitectura física que controlan los qubits».

«Nuestro nuevo chip pone fin a esos límites».

Los resultados han sido publicados en Naturaleza Electrónica.

La mayoría de los sistemas cuánticos requieren bits cuánticos, o qubits, para funcionar a temperaturas cercanas al cero absoluto (-273,15 grados). Esto es para evitar que pierdan su ‘cuántica’, el carácter de materia o luz que las computadoras cuánticas necesitan para realizar sus cálculos especializados.

Para que los dispositivos cuánticos hagan algo útil, necesitan instrucciones. Eso significa enviar y recibir señales electrónicas desde y hacia los qubits. Con la arquitectura cuántica actual, eso involucra muchos cables.

«Las máquinas actuales crean una hermosa variedad de cables para controlar las señales; se ven como un nido de pájaros dorados invertidos o un candelabro. Son bonitos, pero fundamentalmente poco prácticos. Significa que no podemos escalar las máquinas para realizar cálculos útiles. Hay un cuello de botella real de entrada-salida «, dijo el profesor Reilly, también investigador jefe del Centro ARC de sistemas de ingeniería cuántica (EQUS).

Recomendado:  'Deepfaking the mind' podría mejorar las interfaces cerebro-computadora para personas con discapacidades

El ingeniero senior de hardware de Microsoft, Dr. Kushal Das, un inventor conjunto del chip, dijo: «Nuestro dispositivo elimina todos esos cables. Con solo dos cables que llevan información como entrada, puede generar señales de control para miles de qubits.

«Esto cambia todo para la computación cuántica».

El chip de control se desarrolló en Microsoft Quantum Laboratories en la Universidad de Sydney, una asociación académica-industrial única que está cambiando la forma en que los científicos abordan los desafíos de ingeniería.

«Construir una computadora cuántica es quizás la tarea de ingeniería más desafiante del siglo XXI. Esto no se puede lograr trabajando con un pequeño equipo en un laboratorio universitario en un solo país, pero necesita la escala que ofrece un gigante tecnológico global como Microsoft». Dijo el profesor Reilly.

«A través de nuestra asociación con Microsoft, no solo hemos sugerido una arquitectura teórica para superar el cuello de botella de entrada-salida, la hemos construido.

«Hemos demostrado esto mediante el diseño de un chip de silicio personalizado y acoplándolo a un sistema cuántico», dijo. «Estoy seguro de poder decir que este es el circuito integrado más avanzado jamás construido para operar a temperaturas criogénicas profundas».

Si se realizan, las computadoras cuánticas prometen revolucionar la tecnología de la información al resolver problemas más allá del alcance de las computadoras clásicas en campos tan diversos como la criptografía, la medicina, las finanzas, la inteligencia artificial y la logística.

PRESUPUESTO DE ENERGÍA

Las computadoras cuánticas se encuentran en una etapa similar a la de las computadoras clásicas en la década de 1940. Máquinas como ENIAC, la primera computadora electrónica del mundo, requerían salas de sistemas de control para lograr cualquier función útil.

Recomendado:  Google puede hacer preguntas sobre la ética de la IA, pero no quiere respuestas | Google

Ha sido necesario décadas para superar los desafíos científicos y de ingeniería que ahora permiten que miles de millones de transistores quepan en su teléfono móvil.

«Nuestra industria se enfrenta quizás a desafíos aún mayores para llevar la computación cuántica más allá de la etapa ENIAC», dijo el profesor Reilly.

«Necesitamos diseñar chips de silicio altamente complejos que operen a 0.1 Kelvin», dijo. «Es un ambiente 30 veces más frío que el espacio profundo».

La investigación doctoral del Dr. Sebastian Pauka en la Universidad de Sydney abarcó gran parte del trabajo para conectar los dispositivos cuánticos con el chip. Dijo: «Operar a temperaturas tan frías significa que tenemos un presupuesto de energía increíblemente bajo. Si tratamos de poner más energía en el sistema, sobrecalentaremos todo».

Para lograr su resultado, los científicos de Sydney y Microsoft construyeron el circuito integrado más avanzado para operar a temperaturas criogénicas.

«Hemos hecho esto mediante la ingeniería de un sistema que opera muy cerca de los qubits sin perturbar sus operaciones», dijo el profesor Reilly.

“Los sistemas de control actuales para qubits se eliminan a metros de la acción, por así decirlo. Existen principalmente a temperatura ambiente.

«En nuestro sistema no tenemos que salir de la plataforma criogénica. El chip está ahí con los qubits. Esto significa menor potencia y velocidades más altas. Es un sistema de control real para la tecnología cuántica».

AÑOS DE INGENIERIA

«Descubrir cómo controlar estos dispositivos requiere años de desarrollo de ingeniería», dijo el profesor Reilly. “Para este dispositivo comenzamos hace cuatro años cuando la Universidad de Sydney inició su asociación con Microsoft, que representa la mayor inversión en tecnología cuántica en Australia.

Recomendado:  La investigación podría permitir el monitoreo de nuestros océanos o la exploración de mundos oceánicos alienígenas

«Creamos muchos modelos y bibliotecas de diseño para capturar el comportamiento de los transistores a temperaturas criogénicas profundas. Luego, tuvimos que construir dispositivos, verificarlos, caracterizarlos y finalmente conectarlos a qubits para verlos funcionar en la práctica».

El vicerrector y director de la Universidad de Sydney, el profesor Stephen Garton, dijo: «Toda la comunidad universitaria está orgullosa del éxito del profesor Reilly y esperamos muchos años de colaboración continua con Microsoft».

El profesor Reilly dijo que el campo ahora ha cambiado fundamentalmente. «No se trata solo de ‘aquí está mi qubit’. Se trata de cómo se construyen todas las capas y toda la tecnología para construir una máquina real.

«Nuestra asociación con Microsoft nos permite trabajar con rigor académico, con el beneficio de ver nuestros resultados rápidamente puestos en práctica».

El vicecanciller adjunto (investigación), profesor Duncan Ivison, dijo: «Nuestra asociación con Microsoft ha consistido en hacer realidad la visión inspirada de David Reilly para habilitar la tecnología cuántica. Es fantástico ver que esa visión se convierte en realidad».

El profesor Reilly dijo: «Si hubiéramos permanecido únicamente en la academia, este chip nunca se habría construido».

El científico australiano dijo que no se detendrá allí.

«Recién estamos comenzando con esta nueva ola de innovación cuántica», dijo. «Lo mejor de la asociación es que no solo publicamos un artículo y seguimos adelante. Ahora podemos continuar con el plan para hacer realidad la tecnología cuántica a escala industrial».